EFFICIENT ENTROPY FOR POLICY GRADIENT WITH MULTI-DIMENSIONAL ACTION SPACE

Home / Publications / EFFICIENT ENTROPY FOR POLICY GRADIENT WITH MULTI-DIMENSIONAL ACTION SPACE

Yiming Zhang , Quan Ho Vuong , Kenny Song , Xiao-Yue Gong and Keith W. Ross
This paper considers entropy bonus, which is used to encourage exploration in policy gradient. In the case of high-dimensional action spaces, calculating the entropy and its gradient requires enumerating all the actions in the action space and running forward and back-propagation for each action, which may be computationally infeasible. We develop several novel unbiased estimators for the entropy bonus and its gradient. We apply these estimators to several models for the parameterized policies, including Independent Sampling, CommNet, Autoregressive with Modified MDP, and Autoregressive with LSTM.