Rui Zhang and Quanyan Zhu
Distributed Support Vector Machines (DSVM) have been developed to solve large-scale classification problems in networked systems with a large number of sensors and control units. However, the systems become more vulnerable as detection and defense are increasingly difficult and expensive. This work aims to develop secure and resilient DSVM algorithms under adversarial environments in which an attacker can manipulate the training data to achieve his objective. We establish a game-theoretic framework to capture the conflicting interests between an adversary and a set of distributed data processing units.