Dynamics of Strategic Protection Against Virus Propagation in Heterogeneous Complex Networks

Home / Publications / Dynamics of Strategic Protection Against Virus Propagation in Heterogeneous Complex Networks

Yezekael Hayel and Quanyan Zhu

With an increasing number of wide-spreading cyber-attacks on networks such as the recent WannaCry and Petya Ransomware, protection against malware and virus spreading in large scale networks is essential to provide security to network systems. In this paper, we consider a network protection game in which heterogeneous agents decide their individual protection levels against virus propagation over complex networks. Each agent has his own private type which characterizes his recovery rate, transmission capabilities, and perceived cost. We propose an evolutionary Poisson game framework to model the heterogeneous interactions of the agents over a complex network and analyze the equilibrium strategies for decentralized protection.