Jeffrey Pawlick and Quanyan Zhu
Data ecosystems are becoming larger and more complex due to online tracking, wearable computing, and the Internet of Things. But privacy concerns are threatening to erode the potential benefits of these systems. Recently, users have developed obfuscation techniques that issue fake search engine queries, undermine location tracking algorithms, or evade government surveillance. Interestingly, these techniques raise two conflicts: one between each user and the machine learning algorithms which track the users, and one between the users themselves. In this paper, we use game theory to capture the first conflict with a Stackelberg game and the second conflict with a mean field game.